If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+30x-252=0
a = 1; b = 30; c = -252;
Δ = b2-4ac
Δ = 302-4·1·(-252)
Δ = 1908
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1908}=\sqrt{36*53}=\sqrt{36}*\sqrt{53}=6\sqrt{53}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{53}}{2*1}=\frac{-30-6\sqrt{53}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{53}}{2*1}=\frac{-30+6\sqrt{53}}{2} $
| x-17=50 | | w/4=14 | | 8y+48=5y+33 | | 8x-200=5x-9 | | -7=9x-6-8x | | v-88=80 | | 10(x-2)=4(x+1) | | 7x-2x=15-5=x= | | 5u-35=-8(u-7) | | 5y-8=3y-10 | | -7y+5(y-3)=-1 | | -39+m=-42 | | (z+40)+z=z-31 | | 2x2-242=0 | | 4x+2=10- | | 3/(1/)=x/(2/3) | | −4y=−12 | | 6t-4=-2 | | 16^2x+1=2^5-x | | 6=14-k | | 17=−5+2h | | 6(x-6)=5(x+10 | | -21=7/4x | | 7d+5=4d+32 | | 4+x/2=20 | | 7d+5=4d= | | -52=7u-6u | | t/2-4=-1 | | -3(r)-10=15(r)-8 | | 1x+11=4x-43 | | 3u^2+15=99 | | -3+9g=60 |